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Imaging on Sub-milliarcsecond Scales with VLBI

VLBI: multiple radio antennas scattered across surface of Earth
(+ sometimes one in space)

- Observe same object at same time

- Resolution as fine as ~70 parcsec at mm wavelengths

Measures interference pattern of waves received by all
permutations of N(N-1)/2 pairs of N antennas

Interference pattern represents
Fourier transform of brightness
distribution of the radio emission
- Inverse Fourier transform
produces image of source
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VLBI: Point-spread Function (“Beam”)

Resolution of any give pair of antennas depends on projected
length & orientation of vector between antennas as viewed
by the celestial source — this changes as Earth rotates

Baseline vectors follow arcs in (u,v) plane
u = east-west component, v = north-south component
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VLBI: Point-spread Function (“Beam”) (Part 2)

Angular resolution in a given direction corresponds to the projected
maximum baseline length in that direction

Holes in (u,v) coverage cause bright (positive & negative) “side-lobes”

Dirty I beam. Array: BFHKLMNOPS
3C279 at 43.135 GHz 2011 Dec 02
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BLLAC at 43.135 GHz 2011 Dec 02
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1622-297 at 43.135 GHz 2011 Dec 02
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Because beam is complicated & data contain calibration errors, need to proceed

slowly with imaging
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- Iterative process creating image (with CLEAN) & using image to refine calibration
(with many constraints!) — called “self-calibration”

Time-variable atmospheric delays of waves = loss of absolute position information



VLBI Visibility Curves of Model Sources
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b = baseline length in units of 10® wavelengths
a = angular diameter or FWHM in arcsec

- Visibility: amplitude V &

phase ¢ of interference
pattern

Shown are visibility curves of
circularly symmetric
brightness distributions

Point source: V=1and ¢=0



VLBI Visibility Curves of Model Sources (Part 2)

Visigivity CutveE oF A SouRcE ConTh iNING Two

Pt e Visibility: amplitude V &
o phase @ of interference
pattern
| Shown are visibility curves
V A ¢ Guieed of circularly symmetric
ot 0,ee brightness distributions
oo What do you expect if the
@ components are
% 05 extended rather than
b s (10° A * arcsec) points?

b = baseline length in units of 10® wavelengths

s = angular separation of components in arcsec
R = ratio of flux densities of two components Of course, real blazars are

usually more complex, &
so are visibilities



3C 111: Ejection & Superluminal Motion of Knots

VLBA images at 43 GHz (7 mm) '
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(see Fe line)

3C 111: X-rays from accretion disk/corona
Chatterjee et al. (2011, ApJ)
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3C 111: Distance of 43 GHz “Core” from Central Engine
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Superluminal ejections follow X-ray dips [z GRS R IICI AN S RN Tl (0014 -1 H
by mean time of 55 days projected) from black hole




The “Core” of Blazar Jets

Observations suggest that core on VLBI images is either:
1. T~ 1 surface (opacity is from synchrotron self-absorption)

2. First standing (oblique or conical) shock outside T ~ 1 surface
(Daly & Marscher 1988 ApJ, D’Arcangelo et al. 2007 AplJL)

Core at ~3

T>1at~3 t>lat~1 <tT>1lat~4
mm cm cm

Stationary feature with variable polarization

HD simulation
(Gomez et al.
1997)
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VLBI for Fun & Profit: 3C 454.3

Model fit in Difmap to measure flux, angular size, & position
(relative to “core”) of knots of interest

- We use circular Gaussian brightness distributions of
components of image (can use elliptical Gaussians, but this
often provides too few constraints) to get FWHM sizes

- Conversion of FWHM to diameter of sphere: multiply by 1.8
- Conversion of FWHM to diameter of disk: multiply by 1.6
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VLBI of 3C 454.3 (Part 2)

Results of model fit in Difmap: knot K10 passed through
“core” very close to peak of late-2010 flare

Zz=0.859 = 1 milliarcsec = 7.7 pc

B.pp = 9¢, a(FWHM) = 0.11 milliarcsec > R = 0.80 pc
t,. =0.12yr > 6, = (1+z) R/t , =40
2>vy=21,0=0.6°
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Behavior of Jet during y-ray Flares in 34 Blazars

Relative Flux
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— Of 64 y-ray flares, 43 are simultaneous
(within errors) with a new superluminal
knot or a major outburst in the core at 7
mm

(Both jet + gamma-ray emission are
quiescent over 3 years in 5 sources)

— Even accounting for chance
coincidences, > 50% of y-ray flares occur
in the “core” seen in 7 mm images,
parsecs from the black hole

—>However, some flares seem to be
unassociated with major mm-wave
events

5.55x104

:J < y-ray light curves (blue), “core” light
curve at 7 mm (red), & times of new
superluminal knots (yellow) for 30 of the
blazars in the sample




Linear Polarization

For optically thin synchrotron radiation with a uniform B field, degree
of polarization has its maximum value at

Pay = 3(1+a)/(5+3a) where a is the spectral index, F,~ v
For typical values of a (0.5-2), this is in range of 70-80%
E-vector position angle x transverse to projected direction of B

Optically thick case: p ~p ... /7, X parallel to projected direction of B

But p is not observed to be so high 2 can model as 2 cross-polarized
components or by N cells with random field directions:

<p>=p,_. N* with standard deviation o(p) = <p>/2*

<x> transverse to mean projected B direction

Warning: when measuring polarization, need to correct for statistical bias, especially
when p is low; see Wardle & Kronberg (1974, ApJ, 194, 249)



PoIarlzatlon In VLBI Images BL Lacin 2011
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L PKS 1510-089

Rotation of Optical Polarization in PKS 1510-089
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Rotation starts when major optical activity
begins, ends when major optical activity ends
& superluminal blob passes through core

- Non-random timing argues against rotation
resulting from random walk caused by
turbulence — implies single blob did all

Also, later polarization rotation similar to end
of earlier rotation, as expected if caused by
geometry of mag. field; event occurs as a
weaker blob approaches core

Model curve: blob following a spiral path
through coiled magnetic field in an
accelerating flow

I" increases from 8 to 24, § from 15 to 38
Blob moves 0.3 pc/day as it nears core

Core lies > 17 pc from central engine




Sites of y-ray Flares in PKS 1510-089 (Marscher et al. 2010 ApJL)

Sketch of PKS 1510-089

Helical magnetic field

Moving emnssnon feature
Conical standing shock
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Possible local sources of beamed seed photons:
Accretion disk sheath & Mach disk
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Evidence for Collimation of Jets Well Outside Central
Engine

e VLBA observations of M87: jet appears broad near core
—> Sheath? Or flow collimates on scales ~1000 R,

n

Walker et al.
NRAO website
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Behavior of Jet during y-ray Flares in 34 Blazars

Ejection of bright superluminal knot:

*** Knot passes core near peak of flare within error bars: 27 events in 14 sources
- Flare prior to knot passing through core: 5 in 4 sources [3 included in ***]

- Flare after knot passes through core: 7 in 6 sources [all different from ***]

-[4 of these (3 sources) are associated with polarization increase in knot]

Contemporaneous outburst in core region with no bright knot (yet) confirmed: 12 in 11
sources (6 included in **%*)

Gamma-ray flare with no jet event observed: 5 in 4 sources (2 included in ***)

Superluminal ejection or major core flare without observed gamma-ray flare: 8 in 7 sources (2
included in **%)

Quiescent jet + quiescent in gamma-rays: 5 sources

— Of 64 y-ray flares, 43 are simultaneous within errors with a new superluminal knot or a
major outburst in the core at 7 mm

— Even accounting for chance coincidences, > 50% of y-ray flares occur in the “core” seen in 7
mm images




